CVIndependent

Wed07242019

Last updateTue, 18 Sep 2018 1pm

Anna Dise slammed her hand into her car’s steering wheel, crying out for her father, Gordon, as he ran into their blazing home in Butte Creek Canyon.

She tried desperately to get the car to start, but it was no use. Worse yet, she was running out of time, and her dad wasn’t coming back out. One of the last things Dise saw before grabbing her two dogs and running for her life from the spreading Camp Fire was her childhood home’s kitchen disintegrating.

Dise called 911, but emergency personnel couldn’t get to her. To survive, she needed to find a way to outwit the blaze. She found a ditch and hunkered down, using what little water it held to douse herself and her beloved pets, Luna and Sirius, as embers rained down upon them.

Hours went by, and Dise, terrified the flames would consume her, stayed on alert as she spent the night outside.

“I had to stay awake and watch which way the fires were moving, all the hot spots,” she said on Nov. 9 at Chico’s Neighborhood Church, one of several locations temporarily housing evacuees and others rescued from the deadly Northern California blaze that ignited the previous morning.

In the early morning light, under a blanket of smoke, Dise hiked back to her house. There, she found its charred, skeletal remains and the car “all melted down.” There was no sign of her father.

“I don’t even think I saw my dad’s bones, but I know he was in there,” she said.

Inexplicably, a bag of family photos she’d abandoned was “untouched, no burns or anything.” That, along with her canine companions, provided some comfort.

“We lost everything except for each other,” she said.

Dise’s cellphone battery had died, so she walked to a neighbor’s house and waited for help to arrive. She heard chainsaws in the distance—the sound of Cal Fire personnel working their way through fallen trees—and was rescued around 7 a.m.

Dise’s harrowing story would be unfathomable were it not for the fact that so many other Butte County residents can relate to it. Indeed, tens of thousands of residents fled for their lives, as the Camp Fire bore down on the Paradise and Magalia ridge communities of Butte County, as well as several surrounding hamlets, including Concow and Butte Creek Canyon.

The blaze started the morning of Nov. 8 east of Paradise in the Plumas National Forest. The cause is still under investigation, but one of the primary questions is whether an issue with a nearby high-voltage power line is related. Already facing billions in lawsuits for allegedly sparking other California wildfires—including the Tubbs Fire in Napa, Sonoma and Lake counties in October of last year—PG&E reported to the California Public Utilities Commission that an outage occurred just before the first calls of the Camp Fire came in to authorities.

It spread quickly in the parched foothills, pushed by low humidity and high winds that blew embers for miles, triggering fires throughout the region. As of this morning (Nov. 20), the firestorm had destroyed more than 16,800 structures. It has consumed more than 151,000 acres and was 70 percent contained, according to Cal Fire.


Amid the gray, post-apocalyptic landscape, particularly in the residential portions of Paradise, streets leading to the few main arteries exiting to the valley below were strewn with vehicles. They’d been abandoned by occupants who’d been stopped in gridlock traffic and had no choice but to get out and try to outrun the fast-moving flames.

Some of the automobiles were so scorched that their make and model were unrecognizable. Only shells remained, and in some cases, trails of melted aluminum oozed on the asphalt below. Several were crushed by collapsed power polls or trees. Still others appeared eerily unscathed.

James Betts witnessed the confusion and panic first-hand. Huddled with other evacuees at Neighborhood Church the day after escaping the flames, he described how quickly the fire moved through his Paradise neighborhood and how fortunate he was to make it out.

He, along with a friend and several family members, including his grandmother and nephew, were alerted to the fire by loud explosions. Outside, they saw flames down the street and drivers backed up on the roadway, honking and yelling.

Nobody in Betts’ group had a car.

“I was screaming at people, begging them, ‘Please stop,’” he said. “It was like Armageddon outside. It was nuts.”

A stranger driving a pickup truck finally pulled up and all of them, plus their animals, piled into the bed. “We’re so lucky, we really are,” Betts said. “I gave him the biggest hug in the world. I don’t even know his name.”

Betts was echoed by fellow Paradise evacuee Oscar Albretsen, an epileptic who also was without transportation. “I honestly thought I was going to burn to death,” he said.

Rescue came in the form of his neighbors, who made room in their vehicle for Albretsen and his cat, Nibbler.

The scene he described on the downhill ride to Chico is surreal—a wall of fire on either side of the roadway, which was dotted with charred deer carcasses, abandoned cars with pets inside, and homes burning or burned to the ground with only their chimneys intact.

Albretsen’s last glimpse of the landscape in no way resembled his hometown.

“It’s beautiful, and a town where people are so good to each other,” Albretsen said. “Now it’s starting to dawn on me: Everybody lost everything.”

A version of this piece originally appeared in the Chico News & Review. Please consider donating to the GoFundMe campaign for employees of the News & Review who have been affected by the fire at www.gofundme.com/help-our-news-amp-review-family.

Published in Environment

The spring of 2011 was wetter than usual in the Pacific Northwest. A huge snow year was followed by rain, and during the peak, runoff water was ripping through the hydroelectric turbines on Bonneville Power Administration’s dams.

Spring is also the windy season, and hundreds of new turbines in the region were pumping juice into the electrical grid. Even when substantial electricity exports to California were taken into account, the combined wind and hydropower plants were generating more carbon-free electricity than the region’s residents and businesses could consume.

But too much of a good thing is, well, too much. In order to keep the grid from being overloaded, the BPA forced the wind farms to shut down, bashing their bottom line. Controversy and lawsuits ensued: Both wind-farmers and salmon advocates would have preferred it if the BPA had spilled the water over the dams, rather than run it through the turbines.

Regardless of who’s right in this case, the whole brouhaha could have been avoided, and the dams and turbines could have continued to pump out power, had one piece of technology been introduced: a giant battery. Charge it up during times of oversupply, and draw from it during times of need.

If only it were that easy. Thanks to the high cost and immature technology, large-scale energy storage remains rare in the North American Grid.

In October, however, California’s utility regulators shook the battery world up: They required the state’s biggest utilities—Pacific Gas and Electric, Southern California Edison, and San Diego Gas and Electric—collectively to install 1,325 megawatts of energy storage by the end of 2024 (“where megawatt represents the peak power capacity of the storage resource in terms of the maximum discharge rate,” according to the California Public Utility Commission draft decision documents).

While that’s only about the same capacity as one large coal power plant, it will be a huge leap. Today’s biggest storage projects are only around 140 megawatts, and the largest battery project in California is a mere four megawatts.

Electricity is a crazy product. Just about any other good can be manufactured, stored and then distributed to the consumer according to demand. But electricity is cranked out of turbines or solar panels and sent to consumers at the speed of light. At any given moment, production must be equal to demand, lest the whole grid go haywire, meaning that outages ensue—thus the Northwest wind shutdown of 2011. Solar panels only generate significant amounts of power for a limited time each day, and their peak output tends to occur a few hours earlier than peak demand. A big thunderhead blocking the sun’s rays from a solar array can cut the array’s output by as much as 80 percent in seconds. Wind, meanwhile, tends to blow mostly at night, when demand is low, and second-to-second fluctuations can cause a wind farm’s output to vary dramatically.

That means that for every added megawatt of wind or solar in a particular section of the grid, the operators of that grid have to have on hand a controllable, more-predictable power source—usually either hydroelectric or fossil fuel—to smooth the bobbles and back things up in case of dramatic drops in generation. But large-scale storage could also play the backup and smoothing role, thereby displacing fossil fuels in the grid. Indeed, without it, the hope of a fossil fuel-free grid is no more than a pipe dream.

At a recent gathering of the Rocky Mountain Association of Energy Engineers in Denver, the importance of storage was clear. Several people mentioned the significance of California’s new requirement. And the first ever Randy Udall scholarship, announced at the conference, went to University of Colorado at Boulder doctoral student Michelle Lim for her work on energy storage. Robert Welch, a prominent energy consultant, pointed out that energy storage isn’t a totally new idea: When a utility stockpiles coal, it’s storing energy.

Unfortunately, it’s not quite that easy with actual electricity. You can’t just pile it up in a warehouse. Having said that, there is no shortage of storage technologies—though many are untested or costly—from which the California utilities can choose to fulfill the mandate. Just a few examples:

Batteries/chemical storage: Near San Jose, Calif., the brand new Yerba Buena sodium sulfur battery system has a capacity of 4 megawatts, and will be able to keep a more constant supply of power flowing into Silicon Valley. But batteries are expensive, and take a while to charge, plus the charge doesn’t last a long time. They are the Achilles’ heel of electric vehicles, too.

Crowdsourcing storage: One electric car battery isn’t going to do much aside from power the car for 100 miles, but 100,000 of them, all hooked into the grid at the same time, could provide large-scale backup. It’s a serious proposal, and it makes sense. The only problem is timing: How do you ensure that an adequate number of folks will have their cars plugged in when you need to draw from their batteries for backup?

Pumped hydro storage: A reservoir with hydropower is essentially a giant battery, though we can’t control the charging process. Put a reservoir on a hill; pump water up to it during times of high power production; and release the water to turn a turbine during high demand—and you’re getting somewhere. It’s not a bad idea, and there are several scattered across the U.S., but they require specific topographic conditions.

Thermal storage: In Gila Bend, Ariz., the Solana solar project reflects sunlight onto tubes, creating heat and steam, which turns turbines that generate electricity. In the process, the sun also heats up salt, which retains the heat, which is later released to generate steam and power when the sun’s not shining.

Compressed air: Not unlike pumped hydro-storage, this system uses excess power to pump air into underground chambers, where it is pressurized. It can later be released to turn turbines and generate electricity.

And there are many more, including flywheels; superconducting magnetic energy; and filling and emptying giant, hollow spheres that hang from offshore wind facilities in order to turn a turbine.

None of these technologies are perfect, and some remain infeasible at a large scale. But a decade ago, the same could be said for large-scale wind and solar. As states started requiring utilities to add set percentages of renewable energy to their portfolios, innovation accelerated, and costs came down.

California’s new requirement has the power to do the same with energy storage. If other states follow, as is often the case, it will provide the push needed to bring those big batteries online—and finally loosen fossil fuels’ grip on our electrical grid.

Jonathan Thompson is a senior editor at High Country News, the site from which this was cross-posted. The author is solely responsible for the content.

Published in Environment